Bispectral Darboux Transformations: The Generalized Airy Case

نویسنده

  • Alex Kasman
چکیده

This paper considers Darboux transformations of a bispectral operator which preserve its bispectrality. A sufficient condition for this to occur is given, and applied to the case of generalized Airy operators of arbitrary order r > 1. As a result, the bispectrality of a large family of algebras of rank r is demonstrated. An involution on these algebras is exhibited which exchanges the role of spatial and spectral parameters, generalizing Wilson’s rank one bispectral involution. Spectral geometry and the relationship to the Sato grassmannian are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Bispectral Darboux Transformations from Jacobi Operators

We construct families of bispectral difference operators of the form a(n)T + b(n) + c(n)T where T is the shift operator. They are obtained as discrete Darboux transformations from appropriate extensions of Jacobi operators. We conjecture that along with operators previously constructed by Grünbaum, Haine, Horozov, and Iliev they exhaust all bispectral regular (i.e. a(n) 6= 0, c(n) 6= 0,∀n ∈ Z) ...

متن کامل

Calogero-moser Pairs and the Airy and Bessel Bispectral Involutions

This paper follows upon the study of the Airy bispectral involution made in [KR]. There we gave an analogue, for arbitrary rank, of the rank-one bispectral involution developed by Wilson [W1]. Recently, [W2], Wilson has established a relationship between the rank-one bispectral involution and the complex analogue of the CalogeroMoser phase space. This relationship leads to explicit formulae for...

متن کامل

Generalized Algebraic Bargmann–darboux Transformations

Algebraic Bargmann and Darboux transformations for equations of a more general form than the Schrödinger ones with an additional functional dependence h(r) in the righthand side of equations are constructed. The suggested generalized transformations turn into the Bargmann and Darboux transformations for both fixed and variable values of energy and an angular momentum.

متن کامل

Higher-order Darboux transformations with foreign auxiliary equations and equivalence with generalized Darboux transformations

We show that a recently developed modified Darboux transformation that uses foreign auxiliary equations, can be unified with the Darboux transformation for generalized Schrödinger equations. As a consequence of this unification, we obtain explicit Darboux transformations with foreign auxiliary equations of arbitrary order. © 2012 Elsevier Ltd. All rights reserved.

متن کامل

The Heun Equation and the Calogero-moser-sutherland System V: Generalized Darboux Transformations

We obtain isomonodromic transformations for Heun’s equation by generalizing Darboux transformation, and we find pairs and triplets of Heun’s equation which have the same monodromy structure. By composing generalized Darboux transformations, we establish a new construction of the commuting operator which ensures finite-gap property. As an application, we prove conjectures in part III.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996