Bispectral Darboux Transformations: The Generalized Airy Case
نویسنده
چکیده
This paper considers Darboux transformations of a bispectral operator which preserve its bispectrality. A sufficient condition for this to occur is given, and applied to the case of generalized Airy operators of arbitrary order r > 1. As a result, the bispectrality of a large family of algebras of rank r is demonstrated. An involution on these algebras is exhibited which exchanges the role of spatial and spectral parameters, generalizing Wilson’s rank one bispectral involution. Spectral geometry and the relationship to the Sato grassmannian are discussed.
منابع مشابه
Discrete Bispectral Darboux Transformations from Jacobi Operators
We construct families of bispectral difference operators of the form a(n)T + b(n) + c(n)T where T is the shift operator. They are obtained as discrete Darboux transformations from appropriate extensions of Jacobi operators. We conjecture that along with operators previously constructed by Grünbaum, Haine, Horozov, and Iliev they exhaust all bispectral regular (i.e. a(n) 6= 0, c(n) 6= 0,∀n ∈ Z) ...
متن کاملCalogero-moser Pairs and the Airy and Bessel Bispectral Involutions
This paper follows upon the study of the Airy bispectral involution made in [KR]. There we gave an analogue, for arbitrary rank, of the rank-one bispectral involution developed by Wilson [W1]. Recently, [W2], Wilson has established a relationship between the rank-one bispectral involution and the complex analogue of the CalogeroMoser phase space. This relationship leads to explicit formulae for...
متن کاملGeneralized Algebraic Bargmann–darboux Transformations
Algebraic Bargmann and Darboux transformations for equations of a more general form than the Schrödinger ones with an additional functional dependence h(r) in the righthand side of equations are constructed. The suggested generalized transformations turn into the Bargmann and Darboux transformations for both fixed and variable values of energy and an angular momentum.
متن کاملHigher-order Darboux transformations with foreign auxiliary equations and equivalence with generalized Darboux transformations
We show that a recently developed modified Darboux transformation that uses foreign auxiliary equations, can be unified with the Darboux transformation for generalized Schrödinger equations. As a consequence of this unification, we obtain explicit Darboux transformations with foreign auxiliary equations of arbitrary order. © 2012 Elsevier Ltd. All rights reserved.
متن کاملThe Heun Equation and the Calogero-moser-sutherland System V: Generalized Darboux Transformations
We obtain isomonodromic transformations for Heun’s equation by generalizing Darboux transformation, and we find pairs and triplets of Heun’s equation which have the same monodromy structure. By composing generalized Darboux transformations, we establish a new construction of the commuting operator which ensures finite-gap property. As an application, we prove conjectures in part III.
متن کامل